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What is Performance 
Tuning?

• Making slow software fast

• For your definition of “slow” and “fast”

• Knowing it’s slow means you’ve identified 
the problem and can measure it

• “Fast” gives you criteria for when to stop

• Actually a huge topic

• Fundamentally a subset of "Debugging"
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When to Optimize

• "We should forget about small efficiencies, 
say about 97% of the time: premature 
optimization is the root of all evil"

 — D. Knuth

• “The First Rule of Program Optimization: 
Don't do it. The Second Rule of Program 
Optimization (for experts only!): Don't do 
it yet.”

— M. Jackson
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How to Optimize?

• Discover what’s slow

• Figure out why it’s slow

• Fix it
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We Got Tools

• Measure first.  Establish a baseline

• Fix

• Measure again so you don’t regress

measure, measure, measure!

measure first before changing stuff!
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Things to Keep in Mind

• Forget any assumptions about where problems 
are

• Be consistent with your test data

• The Simulator has vastly different performance 
characteristics than the Device

• Throw large data sets at your program often
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Orders of Magnitude
Kind of Product # of records Data Structure

Short-term 
Weight Tracker™ 1 - 10 ivars / C array

Personal 
WeighMonster™ 10 - 1,000 NSArray

Pittsburgh Fitness 
Weigh-Yinz™ 1,000 - 1,000,000 Core Data / sqllite db

LA Fatness 
Übertrack™

1,000,000 - 
100,000,000

Database Server(s) / 
Amazon services

Google WeighIn™ 
(Beta)

100,000,000 - 
100,000,000,000

Distributed db cluster / 
BigTable / Data Centers
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Numbers of Interest: 
Jeff Dean

http://bit.ly/jeff-dean-numbers  

L1 cache reference 0.5 ns

Branch Mispredict 5 ns

L2 cache reference 7 ns

mutex lock/unlock 100 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 10,000 ns

Send 2k bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip in datacenter 500,000 ns 0.5 ms

Disk seek 10,000,000 ns 10 ms

Read 1 MB sequentially from network 10,000,000 ns 10 ms

Read 1 MB sequentially from disk 30,000,000 ns 30 ms

Send Packet CA->Netherlands->CA 150,000,000 ns 150 ms
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Numbers of Interest: Mike Ash
Mac Pro 10.5 iPhone 4

IMP-cached message send 0.7 ns 18 ns

C++ virtual function call 1.1 ns 17 ns

Integer Division 2.4 ns 71 ns

Objective-C message send 4.9 ns 54 ns

Floating-point division 9.2 ns 101 ns

16 byte memcpy 2.9 ns 34 ns

16 byte malloc/free 56 ns 559 ns

NSInvocation message send 77 ns 619 ns

NSObject alloc/init/release 290 ns 4,825 ns

NSAutoreleasePool alloc/init/release 357 ns 1,315 ns

16MB malloc/free 4,485 ns 12,736 ns

Read 16 byte file 21,219 ns 187,450 ns

zero-second delayed perform 42,211 ns 231,307 ns

pthread create/join 56,633 ns 160,274 ns

Write 16 byte file 492,040 ns 1,053,244 ns

NSTask process spawn 6,096,478 ns N/A

Read 16MB file 28,619,582 ns 188,647 ns

Write 16MB file 361,767,087 ns 667,922 ns
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Timing in Code
kern_return_t mach_timebase_info (mach_timebase_info_t info);

uint64_t mach_absolute_time (void);

struct mach_timebase_info {
    uint32_t    numer;
    uint32_t    denom;
};
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Timing in Code
CGFloat BNRTimeBlock (void (^block)(void)) {
    mach_timebase_info_data_t info;
    if (mach_timebase_info(&info) != KERN_SUCCESS) return -1.0;

    uint64_t start = mach_absolute_time ();

    block ();

    uint64_t end = mach_absolute_time ();
    uint64_t elapsed = end - start;

    uint64_t nanos = elapsed * info.numer / info.denom;
    return (CGFloat)nanos / NSEC_PER_SEC;

} // BNRTimeBlock

Big Nerd Ranch Weblog: A Timing Utility
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Timing in Code
    CGFloat time = BNRTimeBlock (^{
            for (NSString *line in split) {
                if ([line hasPrefix: @"#"]) continue;

                BWThingie *thingie = [BWThingie thingieWithString: line];

                if (thingie == nil) continue;

                [_thingies addObject: thingie];
            }
        });

    NSLog (@"time it took: %f", time);
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Timing in The Shell

% time build/BigShow.app/Contents/MacOS/BigShow
3.300u 0.800s 1:44.78 3.9%      0+0k 0+22io 0pf+0w
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Instruments

• Apple’s Toy Chest

• er, Profiling Suite
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Instrument Templates
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Instruments and Library
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Penguin Profile
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Look Under the Rocks
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Aside: Tracking 
Down Problems
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gprof

• Not a GNU program

• compile with -pg, run program

• gprof gmon.out > profile.txt

http://bit.ly/cocoaconf-gprof

Kicking it Old School!

"how to read gprof output"
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The Flat Profile

  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 17.7       3.72     3.72 13786208     0.00     0.00  Ns_DStringNAppend [8]
  6.1       5.00     1.28   107276     0.01     0.03  MakePath [10]
  2.9       5.60     0.60  1555972     0.00     0.00  Ns_DStringFree [35]
  2.7       6.18     0.58  1555965     0.00     0.00  Ns_DStringInit [36]
  2.3       6.67     0.49  1507858     0.00     0.00  ns_realloc [40]
  ...        ...      ...    ...        ...      ...      ...

Biggest Consumer
Time spent in 

function That’s a *lot* of calls
Not a lot of time per call

Ranking

Time just in self

Not that many calls.
Ergo, fairly heavyweight

Noticeable time per call

24% of time in top two functions
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The Call Graph

                0.04        0.18   53622/160866      Ns_CacheNewEntry [62]
                0.04        0.18   53622/160866      Ns_CacheDoStat [58]
                0.04        0.18   53622/160866      Ns_CacheLockURL [64]
[33]     3.0    0.11        0.53  160866         AllocateCa [33]
                0.16        0.17  160866/321890      Ns_DStringVarAppend [30]
                0.06        0.00  160866/1555972     Ns_DStringFree [35]
                0.06        0.00  160866/1555965     Ns_DStringInit [36]
                0.04        0.00  160866/1341534     Ns_LockMutex [43]
                0.03        0.00  160866/1341534     Ns_UnlockMutex [53]

Rank

% of total time
Functions that call it

Functions it calls

# of calls in this
context

total calls, 
program-wide

time in-function

time in children
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Stochastic Profiling

• Using the Debugger for profiling
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Beware Convenience

TString *timestamp = 
    month + “/” + day + “/” + year + “ “ 
    + hours + “:” + minutes + “:” 
    + seconds;
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DTrace

average time
            Terminal 7941
          emacs-i386 9985
       mDNSResponder 17781
              Safari 24666
       VoodooPad Pro 55339
           fseventsd 527863979
                 mds 551164939

call count
       mDNSResponder 2
          emacs-i386 3
            Terminal 4
                 mds 6
           fseventsd 9
       VoodooPad Pro 270
              Safari 622

syscall::read:entry
{
    self->ts = timestamp;
}

syscall::read:return
/self->ts/
{
    delta = timestamp - self->ts;
    @averagetime[execname] = avg(delta);
    @callcount[execname] = count();
    @mintime[execname] = min(delta);
    @maxtime[execname] = max(delta);
    self->ts = 0;
}
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The Point

• How much time was spent in X

• Who called it, how often, how much time

• Whom does X call

• How often, how much time
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For Example...

• I spent 10 seconds runtime, 10% of my app 
in drawing a ride profile.

• I drew it 300 times in the space of four 
minutes from the ride screen.
(That’s a reasonable number given the app)

• Oh look, it called UIImage initWithFoobage 
300 times.   For the same image.  I can 
cache that”
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For Example...

• I spent 50 seconds runtime in Core Graphics 
out of 3 minutes of application run time.

• I called a bunch of functions, all of which 
bottlenecked down to ConvertCYMKToRGB, 
spending most of the time in that utility 
function.

• I can pre-convert those images at build time 
to avoid this work at run time”
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So, what can be slow?

• CPU

• Memory

• Disk / File System

• Network

• Power

• Graphics

Basically, everything
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So, what can be slow?

• CPU

• Memory

• Disk / File System

• Network

• Power

• Graphics

Basically, everything

*
*
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CPU
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CPU

• Processors are pegged and fans are revving

• Usually means you’re doing too much work

• Bad algorithm

• Wrong Data Structure

• Over-eager processing

• Spread the work over more cores
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The Free Lunch Is Over

• It’s been over for awhile

• Moore’s Law Continues

• Concurrency is Now!

• Optimization and Performance Tuning is 
important again
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Algorithms and Data 
Structures Are Important

• Be aware of the computational complexity 
of the tools you use.

• Some are documented

• Some you can infer

• Some you can determine experimentally
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Orders of Complexity
Processing 1000 

items

O(1) Constant Indexing a C array
Hash table lookup

1

O(log n) Logarithmic Binary search
Search in balanced tree

10

O(n) Linear Search in linked list
Inserting into C array

1,000

O(n log n) n log n Most sorts 10,000

O(n2) Quadratic Bubble sort 1,000,000

O(cn) Exponential Recursive Fibonacci 1.07x10301

O(n!) Factorial Brute-Force Traveling 
Salesman

4.02x102567
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What’s wrong with this?

for (i = 0; i < strlen(string); i++) {
    char ch = string[i];
    // ...
}
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What’s wrong with this?

for (i = 0; i < strlen(string); i++) {
    char ch = string[i];
    // ...
}

O(n)

O(n)

O(n) done O(n) times == O(n2)
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Check the Headers
CFArray.h

"The access time for a value in the array is 
guaranteed to be at worst O(lg n) for any 
implementation, current and future, but will often 
be O(1) (constant time). 

Linear search operations similarly have a worst case 
complexity of O(n log n), though typically the 
bounds will be tighter, and so on"
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Collection Meltdown

• “MarkD, why does Cocoa Suck So Much?”

• “I’m putting 4 million objects into an 
NSArray, and it never finishes processing”
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Run Time
4 meeeeeelion objects

number of objects

tim
e

C++ STL

GNUstep

Cocoa
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Time Profiler Instrument

• gprof on steroids 

• Can target one process

• Or the system as a whole 
- even the phone
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Demo

• See where stuff is chewing a lot of CPU 
time

(Business Monitor)
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Memory
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Memory

• Memory is the New I/O

Vector code that converts unsigned char data to 
float and then applies a 9th order polynomial to it is 
still marginally faster than hand-tuned scalar code 
that does a lookup into a 256 entry lookup table 
containing floats.

The G5 can do 16 to 50 vector adds in the time it 
takes to load a cache line (a sequence of bytes) 
from memory
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Locality Of Reference

• How close memory operations are to each 
other

• Sequential operations are most efficient

• Cache Lines

• Hard to control without work
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Locality Of Reference
#define ARRAYSIZE (10000)
int a[ARRAYSIZE][ARRAYSIZE]; // make a huge array

    for (i = 0; i < ARRAYSIZE; i++){
        for(j = 0; j < ARRAYSIZE; j++){
            a[i][j] = 1;
        }
    }

    for (i = 0; i < ARRAYSIZE; i++){
        for(j = 0; j < ARRAYSIZE; j++){
            a[j][i] = 1;
        }
    }

% ./locality
100000000 i,j operations in 21 seconds.
100000000 j,i operations in 106 seconds.

Holy quintuplets, Batman!
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Good Access Pattern

Memory
Pages
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Bad Access Pattern

Memory
Pages
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Good Locality
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Dynamic Memory is 
expensive

• malloc

• +alloc

• operator new
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Block suballocation

base = malloc(100 * sizeof(node)) subdivided into nodes

address of node x at
base + (x * sizeof(node))
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Oh, and fix your leaks

• Leaked / Abandoned memory not usually an 
immediate performance issue

• Can bite you if memory builds up
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Memory Instruments
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Playhead Messages
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Look at the Leaked Blocks
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Look at the Leaked Blocks
Probably the culprit

Seems to be a pattern
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List o’ blocks
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Allocation History
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Stack Trace
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The Culprit
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Abandoned Memory

• Leaked : allocated memory with no reference

• Abandoned : referenced, but not used

• Left over caches

• View added to superview and never 
removed

• Harder to detect, more false positives
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HeapShots
• Mark a heap to create a 

baseline

• Mark it again (and again, and 
again)

• Diff two heapshots to see 
what’s new
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Tableview Crash
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Looking at a Heapshot
Heapshot of interest Initiated the load
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After the Fix
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From the System
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Retain Cycles
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Disk / File System
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Disk / File System

• Extremely slow

• SSDs helping, but still slow

• Large files have locality of reference

• Avoid when you can
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fs_usage
18:24:32  close                                   0.000053   Safari
18:24:32  select                                  0.100163 W Safari
18:24:32  mkdir   /Users/markd/Library/Cookies    0.000027   Safari
18:24:32  open    ibrary/Cookies/Cookies.plist    0.000672   Safari
18:24:32  read                                    0.569160 W fseventsd
18:24:32  lstat   /Users/markd/Library/Cookies    0.000038   fseventsd
18:24:32  read                                    0.569514 W mds
18:24:32  select                                  0.100035 W Safari
18:24:32  select                                  0.100033 W Safari
18:24:32  write                                   0.004993 W Safari
18:24:32  close                                   0.000544   Safari
18:24:32  read                                    0.238500 W fseventsd
18:24:32  read                                    0.238142 W mds
18:24:32  fcntl                                   0.000018   mds
18:24:32  read                                    0.000021   Safari
18:24:32  sendto                                  0.000018   Safari
18:24:32  select                                  0.067144 W Safari
18:24:32  recvfro                                 0.000007   Safari
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sc_usage
BigShow           0 preemptions    0 context switches    2 threads    18:27:18
                  0 faults         0 system calls                      0:00:43

TYPE                            NUMBER        CPU_TIME   WAIT_TIME
------------------------------------------------------------------------------
System         Idle                                      0:39.162( 0:00.903)
System         Busy                                      0:02.757( 0:00.100)
BigShow        Usermode                       0:00.184

mach_msg_trap                   323           0:00.003   0:41.342( 0:01.002) W
semwait_signal                    2           0:00.000   0:40.654( 0:01.002) W
mach_port_insert_member           9           0:00.000   0:00.001
io_connect_method                47           0:00.000   0:00.000
io_service_get_matching           1           0:00.001   0:00.000
vm_deallocate                     5           0:00.000   0:00.000
munmap                           48           0:00.000   0:00.000
getuid                            1           0:00.000
geteuid                           3           0:00.000

CURRENT_TYPE              LAST_PATHNAME_WAITED_FOR     CUR_WAIT_TIME THRD# PRI
------------------------------------------------------------------------------
mach_msg_trap                                                 0:38.820   0  46
semwait_signal                                                0:40.653   1  47
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sc_usage
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Network
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Network

• Networks can be slow, especially WAN

• Beware latency

• Don’t block the main thread

• Like with DNS lookups

• Prefer CFHost to gethostbyname2

• Double-buffer if you can

WWDC 2012 Session 706 : 
Networking Best Practices
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Tools You Can Use

• Instruments

• Network Activity Monitor

• Network Line Conditioner

• Charles web debugging proxy

• WireShark, etc
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Power
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Power

• Very important for mobile users - phones 
and laptops

• They’re not happy if their phone shuts 
down in the middle of the day

• Usually fixed by fixing other problems, 
especially CPU and Graphics

• Try to be bursty in your use, letting the 
chip move to a low-power state when 
waiting for the user
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So Much Power It’s Just Ridiculous
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Graphics
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Graphics

• Loading / initializing images is expensive

• Transparency is expensive

• Blending images is expensive

• Resizing images is expensive

• Quartz line crossings are expensive
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Line Crossings?
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Line Crossings?
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Line Crossings!
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Lines in Motion

(Lineinator)
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Core Animation
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Core Animation

st
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ng
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OpenGL Analyzer
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OpenGL Analyzer
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Other Instruments
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Other Instruments

• Dispatch   (queue lifetimes, invocations)

• Garbage Collection   (scavenging)

• Activity Monitor   (lots of metrics)

• Core Data   (fetches / faults / cache misses)

Thursday, March 21, 13



Low-Level tracking
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Symbol Trace

-NSTableView drawRect:
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DTrace

Thursday, March 21, 13



Wrap-Up
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So What do you do?

• Reduce memory usage

• Change algorithms

• Reducing a constant can help

• Not doing work

• Take advantage of your hardware

• Code tweaks
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Each Situation is 
Different

• Cache values so you don’t have to 
recalculate them

• Recalculate easy to figure out values so 
you don’t have to store them

• Pre-load stuff from disk

• Lazy-load stuff from disk

• More small packets for lower latency

• Fewer big packets for throughput
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That’s All Folks

• Discover what’s slow

• Figure out why it’s slow

• Fix it

@borkware

http://borkware.com/cocoaconf
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Holding Pen
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Cache And Carry

L1 cache reference: 0.5 ns
L2 cache reference: 7 ns
Main memory reference: 100 ns

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L3 Cache
8MB
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The Tale of Woe

• I needed to choose Playlists

• Need to know playlist 
duration

• You don’t get that info 
directly from 
MPMediaFooby

Thursday, March 21, 13



Time Profiler
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Call Tree
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Call Tree
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Uninverted Tree
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Data Mining : Hiding Syslibs
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Data Mining : Objective-C
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