
Up next:
Performance Tuning

Mark Dalrymple
CocoaConf, March 2013

@borkware

http://borkware.com/cocoaconf

Thursday, March 21, 13

What is Performance
Tuning?

• Making slow software fast

• For your definition of “slow” and “fast”

• Knowing it’s slow means you’ve identified
the problem and can measure it

• “Fast” gives you criteria for when to stop

• Actually a huge topic

• Fundamentally a subset of "Debugging"

Thursday, March 21, 13

When to Optimize

• "We should forget about small efficiencies,
say about 97% of the time: premature
optimization is the root of all evil"

 — D. Knuth

• “The First Rule of Program Optimization:
Don't do it. The Second Rule of Program
Optimization (for experts only!): Don't do
it yet.”

— M. Jackson
Thursday, March 21, 13

How to Optimize?

• Discover what’s slow

• Figure out why it’s slow

• Fix it

Thursday, March 21, 13

We Got Tools

• Measure first. Establish a baseline

• Fix

• Measure again so you don’t regress

measure, measure, measure!

measure first before changing stuff!
Thursday, March 21, 13

Things to Keep in Mind

• Forget any assumptions about where problems
are

• Be consistent with your test data

• The Simulator has vastly different performance
characteristics than the Device

• Throw large data sets at your program often

Thursday, March 21, 13

Orders of Magnitude
Kind of Product # of records Data Structure

Short-term
Weight Tracker™ 1 - 10 ivars / C array

Personal
WeighMonster™ 10 - 1,000 NSArray

Pittsburgh Fitness
Weigh-Yinz™ 1,000 - 1,000,000 Core Data / sqllite db

LA Fatness
Übertrack™

1,000,000 -
100,000,000

Database Server(s) /
Amazon services

Google WeighIn™
(Beta)

100,000,000 -
100,000,000,000

Distributed db cluster /
BigTable / Data Centers

Thursday, March 21, 13

Numbers of Interest:
Jeff Dean

http://bit.ly/jeff-dean-numbers

L1 cache reference 0.5 ns

Branch Mispredict 5 ns

L2 cache reference 7 ns

mutex lock/unlock 100 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 10,000 ns

Send 2k bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip in datacenter 500,000 ns 0.5 ms

Disk seek 10,000,000 ns 10 ms

Read 1 MB sequentially from network 10,000,000 ns 10 ms

Read 1 MB sequentially from disk 30,000,000 ns 30 ms

Send Packet CA->Netherlands->CA 150,000,000 ns 150 ms

Thursday, March 21, 13

http://b.qr.ae/jeff-dean-numbers
http://b.qr.ae/jeff-dean-numbers

Numbers of Interest: Mike Ash
Mac Pro 10.5 iPhone 4

IMP-cached message send 0.7 ns 18 ns

C++ virtual function call 1.1 ns 17 ns

Integer Division 2.4 ns 71 ns

Objective-C message send 4.9 ns 54 ns

Floating-point division 9.2 ns 101 ns

16 byte memcpy 2.9 ns 34 ns

16 byte malloc/free 56 ns 559 ns

NSInvocation message send 77 ns 619 ns

NSObject alloc/init/release 290 ns 4,825 ns

NSAutoreleasePool alloc/init/release 357 ns 1,315 ns

16MB malloc/free 4,485 ns 12,736 ns

Read 16 byte file 21,219 ns 187,450 ns

zero-second delayed perform 42,211 ns 231,307 ns

pthread create/join 56,633 ns 160,274 ns

Write 16 byte file 492,040 ns 1,053,244 ns

NSTask process spawn 6,096,478 ns N/A

Read 16MB file 28,619,582 ns 188,647 ns

Write 16MB file 361,767,087 ns 667,922 ns

Thursday, March 21, 13

Timing in Code
kern_return_t mach_timebase_info (mach_timebase_info_t info);

uint64_t mach_absolute_time (void);

struct mach_timebase_info {
 uint32_t numer;
 uint32_t denom;
};

Thursday, March 21, 13

Timing in Code
CGFloat BNRTimeBlock (void (^block)(void)) {
 mach_timebase_info_data_t info;
 if (mach_timebase_info(&info) != KERN_SUCCESS) return -1.0;

 uint64_t start = mach_absolute_time ();

 block ();

 uint64_t end = mach_absolute_time ();
 uint64_t elapsed = end - start;

 uint64_t nanos = elapsed * info.numer / info.denom;
 return (CGFloat)nanos / NSEC_PER_SEC;

} // BNRTimeBlock

Big Nerd Ranch Weblog: A Timing Utility

Thursday, March 21, 13

Timing in Code
 CGFloat time = BNRTimeBlock (^{
 for (NSString *line in split) {
 if ([line hasPrefix: @"#"]) continue;

 BWThingie *thingie = [BWThingie thingieWithString: line];

 if (thingie == nil) continue;

 [_thingies addObject: thingie];
 }
 });

 NSLog (@"time it took: %f", time);

Thursday, March 21, 13

Timing in The Shell

% time build/BigShow.app/Contents/MacOS/BigShow
3.300u 0.800s 1:44.78 3.9% 0+0k 0+22io 0pf+0w

Thursday, March 21, 13

Instruments

• Apple’s Toy Chest

• er, Profiling Suite

Thursday, March 21, 13

Instrument Templates

Thursday, March 21, 13

Instruments and Library

Thursday, March 21, 13

Penguin Profile

Thursday, March 21, 13

Look Under the Rocks

Thursday, March 21, 13

Aside: Tracking
Down Problems

Thursday, March 21, 13

gprof

• Not a GNU program

• compile with -pg, run program

• gprof gmon.out > profile.txt

http://bit.ly/cocoaconf-gprof

Kicking it Old School!

"how to read gprof output"
Thursday, March 21, 13

http://badgertronics.com/writings/gprof.html
http://badgertronics.com/writings/gprof.html
http://badgertronics.com/writings/gprof.html
http://badgertronics.com/writings/gprof.html

The Flat Profile

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 17.7 3.72 3.72 13786208 0.00 0.00 Ns_DStringNAppend [8]
 6.1 5.00 1.28 107276 0.01 0.03 MakePath [10]
 2.9 5.60 0.60 1555972 0.00 0.00 Ns_DStringFree [35]
 2.7 6.18 0.58 1555965 0.00 0.00 Ns_DStringInit [36]
 2.3 6.67 0.49 1507858 0.00 0.00 ns_realloc [40]

Biggest Consumer
Time spent in

function That’s a *lot* of calls
Not a lot of time per call

Ranking

Time just in self

Not that many calls.
Ergo, fairly heavyweight

Noticeable time per call

24% of time in top two functions

Thursday, March 21, 13

The Call Graph

 0.04 0.18 53622/160866 Ns_CacheNewEntry [62]
 0.04 0.18 53622/160866 Ns_CacheDoStat [58]
 0.04 0.18 53622/160866 Ns_CacheLockURL [64]
[33] 3.0 0.11 0.53 160866 AllocateCa [33]
 0.16 0.17 160866/321890 Ns_DStringVarAppend [30]
 0.06 0.00 160866/1555972 Ns_DStringFree [35]
 0.06 0.00 160866/1555965 Ns_DStringInit [36]
 0.04 0.00 160866/1341534 Ns_LockMutex [43]
 0.03 0.00 160866/1341534 Ns_UnlockMutex [53]

Rank

% of total time
Functions that call it

Functions it calls

of calls in this
context

total calls,
program-wide

time in-function

time in children

Thursday, March 21, 13

Stochastic Profiling

• Using the Debugger for profiling

Thursday, March 21, 13

Beware Convenience

TString *timestamp =
 month + “/” + day + “/” + year + “ “
 + hours + “:” + minutes + “:”
 + seconds;

Thursday, March 21, 13

DTrace

average time
 Terminal 7941
 emacs-i386 9985
 mDNSResponder 17781
 Safari 24666
 VoodooPad Pro 55339
 fseventsd 527863979
 mds 551164939

call count
 mDNSResponder 2
 emacs-i386 3
 Terminal 4
 mds 6
 fseventsd 9
 VoodooPad Pro 270
 Safari 622

syscall::read:entry
{
 self->ts = timestamp;
}

syscall::read:return
/self->ts/
{
 delta = timestamp - self->ts;
 @averagetime[execname] = avg(delta);
 @callcount[execname] = count();
 @mintime[execname] = min(delta);
 @maxtime[execname] = max(delta);
 self->ts = 0;
}

Thursday, March 21, 13

The Point

• How much time was spent in X

• Who called it, how often, how much time

• Whom does X call

• How often, how much time

Thursday, March 21, 13

For Example...

• I spent 10 seconds runtime, 10% of my app
in drawing a ride profile.

• I drew it 300 times in the space of four
minutes from the ride screen.
(That’s a reasonable number given the app)

• Oh look, it called UIImage initWithFoobage
300 times. For the same image. I can
cache that”

Thursday, March 21, 13

For Example...

• I spent 50 seconds runtime in Core Graphics
out of 3 minutes of application run time.

• I called a bunch of functions, all of which
bottlenecked down to ConvertCYMKToRGB,
spending most of the time in that utility
function.

• I can pre-convert those images at build time
to avoid this work at run time”

Thursday, March 21, 13

So, what can be slow?

• CPU

• Memory

• Disk / File System

• Network

• Power

• Graphics

Basically, everything

Thursday, March 21, 13

So, what can be slow?

• CPU

• Memory

• Disk / File System

• Network

• Power

• Graphics

Basically, everything

*
*

Thursday, March 21, 13

CPU

Thursday, March 21, 13

CPU

• Processors are pegged and fans are revving

• Usually means you’re doing too much work

• Bad algorithm

• Wrong Data Structure

• Over-eager processing

• Spread the work over more cores

Thursday, March 21, 13

The Free Lunch Is Over

• It’s been over for awhile

• Moore’s Law Continues

• Concurrency is Now!

• Optimization and Performance Tuning is
important again

Thursday, March 21, 13

Algorithms and Data
Structures Are Important

• Be aware of the computational complexity
of the tools you use.

• Some are documented

• Some you can infer

• Some you can determine experimentally

Thursday, March 21, 13

Orders of Complexity
Processing 1000

items

O(1) Constant Indexing a C array
Hash table lookup

1

O(log n) Logarithmic Binary search
Search in balanced tree

10

O(n) Linear Search in linked list
Inserting into C array

1,000

O(n log n) n log n Most sorts 10,000

O(n2) Quadratic Bubble sort 1,000,000

O(cn) Exponential Recursive Fibonacci 1.07x10301

O(n!) Factorial Brute-Force Traveling
Salesman

4.02x102567

Thursday, March 21, 13

What’s wrong with this?

for (i = 0; i < strlen(string); i++) {
 char ch = string[i];
 // ...
}

Thursday, March 21, 13

What’s wrong with this?

for (i = 0; i < strlen(string); i++) {
 char ch = string[i];
 // ...
}

O(n)

O(n)

O(n) done O(n) times == O(n2)

Thursday, March 21, 13

Check the Headers
CFArray.h

"The access time for a value in the array is
guaranteed to be at worst O(lg n) for any
implementation, current and future, but will often
be O(1) (constant time).

Linear search operations similarly have a worst case
complexity of O(n log n), though typically the
bounds will be tighter, and so on"

Thursday, March 21, 13

Collection Meltdown

• “MarkD, why does Cocoa Suck So Much?”

• “I’m putting 4 million objects into an
NSArray, and it never finishes processing”

Thursday, March 21, 13

Run Time
4 meeeeeelion objects

number of objects

tim
e

C++ STL

GNUstep

Cocoa

Thursday, March 21, 13

Time Profiler Instrument

• gprof on steroids

• Can target one process

• Or the system as a whole
- even the phone

Thursday, March 21, 13

Demo

• See where stuff is chewing a lot of CPU
time

(Business Monitor)
Thursday, March 21, 13

Memory

Thursday, March 21, 13

Memory

• Memory is the New I/O

Vector code that converts unsigned char data to
float and then applies a 9th order polynomial to it is
still marginally faster than hand-tuned scalar code
that does a lookup into a 256 entry lookup table
containing floats.

The G5 can do 16 to 50 vector adds in the time it
takes to load a cache line (a sequence of bytes)
from memory

Thursday, March 21, 13

Locality Of Reference

• How close memory operations are to each
other

• Sequential operations are most efficient

• Cache Lines

• Hard to control without work

Thursday, March 21, 13

Locality Of Reference
#define ARRAYSIZE (10000)
int a[ARRAYSIZE][ARRAYSIZE]; // make a huge array

 for (i = 0; i < ARRAYSIZE; i++){
 for(j = 0; j < ARRAYSIZE; j++){
 a[i][j] = 1;
 }
 }

 for (i = 0; i < ARRAYSIZE; i++){
 for(j = 0; j < ARRAYSIZE; j++){
 a[j][i] = 1;
 }
 }

% ./locality
100000000 i,j operations in 21 seconds.
100000000 j,i operations in 106 seconds.

Holy quintuplets, Batman!
Thursday, March 21, 13

Good Access Pattern

Memory
Pages

Thursday, March 21, 13

Bad Access Pattern

Memory
Pages

Thursday, March 21, 13

Good Locality

m
et

ad
at

a
cache data

m
et

ad
at

a

cache
data

m
et

ad
at

a

cache data

m
et

ad
at

a

cache data• • •
m

et
ad

at
a

cache data

m
et

ad
at

a

cache
data

m
et

ad
at

a

cache data

m
et

ad
at

a

cache data• • •

• • •

m
et

ad
at

a
m

et
ad

at
a

m
et

ad
at

a
m

et
ad

at
a

m
et

ad
at

a
m

et
ad

at
a

m
et

ad
at

a
m

et
ad

at
a

Bad Locality

Thursday, March 21, 13

Dynamic Memory is
expensive

• malloc

• +alloc

• operator new

Thursday, March 21, 13

Block suballocation

base = malloc(100 * sizeof(node)) subdivided into nodes

address of node x at
base + (x * sizeof(node))

Thursday, March 21, 13

Oh, and fix your leaks

• Leaked / Abandoned memory not usually an
immediate performance issue

• Can bite you if memory builds up

Thursday, March 21, 13

Memory Instruments

Thursday, March 21, 13

Playhead Messages

Thursday, March 21, 13

Look at the Leaked Blocks

Thursday, March 21, 13

Look at the Leaked Blocks
Probably the culprit

Seems to be a pattern
Thursday, March 21, 13

List o’ blocks

Thursday, March 21, 13

Allocation History

Thursday, March 21, 13

Stack Trace

Thursday, March 21, 13

The Culprit

Thursday, March 21, 13

Abandoned Memory

• Leaked : allocated memory with no reference

• Abandoned : referenced, but not used

• Left over caches

• View added to superview and never
removed

• Harder to detect, more false positives

Thursday, March 21, 13

HeapShots
• Mark a heap to create a

baseline

• Mark it again (and again, and
again)

• Diff two heapshots to see
what’s new

Thursday, March 21, 13

Tableview Crash

Thursday, March 21, 13

Looking at a Heapshot
Heapshot of interest Initiated the load

Thursday, March 21, 13

After the Fix

Thursday, March 21, 13

From the System

Thursday, March 21, 13

Retain Cycles

Thursday, March 21, 13

Disk / File System

Thursday, March 21, 13

Disk / File System

• Extremely slow

• SSDs helping, but still slow

• Large files have locality of reference

• Avoid when you can

Thursday, March 21, 13

fs_usage
18:24:32 close 0.000053 Safari
18:24:32 select 0.100163 W Safari
18:24:32 mkdir /Users/markd/Library/Cookies 0.000027 Safari
18:24:32 open ibrary/Cookies/Cookies.plist 0.000672 Safari
18:24:32 read 0.569160 W fseventsd
18:24:32 lstat /Users/markd/Library/Cookies 0.000038 fseventsd
18:24:32 read 0.569514 W mds
18:24:32 select 0.100035 W Safari
18:24:32 select 0.100033 W Safari
18:24:32 write 0.004993 W Safari
18:24:32 close 0.000544 Safari
18:24:32 read 0.238500 W fseventsd
18:24:32 read 0.238142 W mds
18:24:32 fcntl 0.000018 mds
18:24:32 read 0.000021 Safari
18:24:32 sendto 0.000018 Safari
18:24:32 select 0.067144 W Safari
18:24:32 recvfro 0.000007 Safari

Thursday, March 21, 13

sc_usage
BigShow 0 preemptions 0 context switches 2 threads 18:27:18
 0 faults 0 system calls 0:00:43

TYPE NUMBER CPU_TIME WAIT_TIME
--
System Idle 0:39.162(0:00.903)
System Busy 0:02.757(0:00.100)
BigShow Usermode 0:00.184

mach_msg_trap 323 0:00.003 0:41.342(0:01.002) W
semwait_signal 2 0:00.000 0:40.654(0:01.002) W
mach_port_insert_member 9 0:00.000 0:00.001
io_connect_method 47 0:00.000 0:00.000
io_service_get_matching 1 0:00.001 0:00.000
vm_deallocate 5 0:00.000 0:00.000
munmap 48 0:00.000 0:00.000
getuid 1 0:00.000
geteuid 3 0:00.000

CURRENT_TYPE LAST_PATHNAME_WAITED_FOR CUR_WAIT_TIME THRD# PRI
--
mach_msg_trap 0:38.820 0 46
semwait_signal 0:40.653 1 47

Thursday, March 21, 13

sc_usage

Thursday, March 21, 13

Network

Thursday, March 21, 13

Network

• Networks can be slow, especially WAN

• Beware latency

• Don’t block the main thread

• Like with DNS lookups

• Prefer CFHost to gethostbyname2

• Double-buffer if you can

WWDC 2012 Session 706 :
Networking Best Practices

Thursday, March 21, 13

Tools You Can Use

• Instruments

• Network Activity Monitor

• Network Line Conditioner

• Charles web debugging proxy

• WireShark, etc

Thursday, March 21, 13

Power

Thursday, March 21, 13

Power

• Very important for mobile users - phones
and laptops

• They’re not happy if their phone shuts
down in the middle of the day

• Usually fixed by fixing other problems,
especially CPU and Graphics

• Try to be bursty in your use, letting the
chip move to a low-power state when
waiting for the user

Thursday, March 21, 13

So Much Power It’s Just Ridiculous

Thursday, March 21, 13

Graphics

Thursday, March 21, 13

Graphics

• Loading / initializing images is expensive

• Transparency is expensive

• Blending images is expensive

• Resizing images is expensive

• Quartz line crossings are expensive

Thursday, March 21, 13

Line Crossings?

Thursday, March 21, 13

Line Crossings?

Thursday, March 21, 13

Line Crossings!

Thursday, March 21, 13

Lines in Motion

(Lineinator)
Thursday, March 21, 13

Core Animation

Thursday, March 21, 13

Core Animation

st
at

ic
sc

ro
lli

ng

Thursday, March 21, 13

OpenGL Analyzer

Thursday, March 21, 13

OpenGL Analyzer

Thursday, March 21, 13

Other Instruments

Thursday, March 21, 13

Other Instruments

• Dispatch (queue lifetimes, invocations)

• Garbage Collection (scavenging)

• Activity Monitor (lots of metrics)

• Core Data (fetches / faults / cache misses)

Thursday, March 21, 13

Low-Level tracking

Thursday, March 21, 13

Symbol Trace

-NSTableView drawRect:

Thursday, March 21, 13

DTrace

Thursday, March 21, 13

Wrap-Up

Thursday, March 21, 13

So What do you do?

• Reduce memory usage

• Change algorithms

• Reducing a constant can help

• Not doing work

• Take advantage of your hardware

• Code tweaks

Thursday, March 21, 13

Each Situation is
Different

• Cache values so you don’t have to
recalculate them

• Recalculate easy to figure out values so
you don’t have to store them

• Pre-load stuff from disk

• Lazy-load stuff from disk

• More small packets for lower latency

• Fewer big packets for throughput
Thursday, March 21, 13

That’s All Folks

• Discover what’s slow

• Figure out why it’s slow

• Fix it

@borkware

http://borkware.com/cocoaconf
Thursday, March 21, 13

Holding Pen

Thursday, March 21, 13

Cache And Carry

L1 cache reference: 0.5 ns
L2 cache reference: 7 ns
Main memory reference: 100 ns

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L2 Cache
256K - 1MBCore

L1 Data
(32K)

L1 Instruction
(32K)

L3 Cache
8MB

Thursday, March 21, 13

The Tale of Woe

• I needed to choose Playlists

• Need to know playlist
duration

• You don’t get that info
directly from
MPMediaFooby

Thursday, March 21, 13

Time Profiler

Thursday, March 21, 13

Call Tree

Thursday, March 21, 13

Call Tree

Thursday, March 21, 13

Uninverted Tree

Thursday, March 21, 13

Data Mining : Hiding Syslibs

Thursday, March 21, 13

Data Mining : Objective-C

Thursday, March 21, 13

