Inside the Bracket

[what reallyHappens];

Mark Dalrymple

CocoaHeads / Pittsburgh June 2013
CocoaHeads / Atlanta November 2013

http://borkware.com/cocoaconf

Thursday, November 14, 13

Day-in, Day-out

— (void) drawRect: (CGRect) rect {
[[NSColor darkGrayColor] setStroke];

for (NSString *countryCode in g countryPaths) ({
NSBezierPath *path = [g countryPaths objectForKey: countryCode];

// Ask the delegate.
NSColor *fillColor = [self.delegate worldMap: self
colorForCountryCode: countryCode];

if (fillColor == nil) fillColor = [NSColor whiteColor];

[fillColor setFill];
[path fill];

[path stroke];
}

} // drawRect

Thursday, November 14, 13

Day-in, Day-out

[[NSColor darkGrayColor] setStroke]
[g countryPaths objectForKey: countryCode]
[self.delegate worldMap: self
colorForCountryCode: countryCode]

[NSColor whiteColor]

[fillColor setFill]
[path £i11]

[path stroke]

Thursday, November 14, 13

Thursday, November 14, 13

It's all Indirection

It's all Indirection

Any problem in computing
can be solved with an
additional layer of indirection

Indirection

® | oops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

Thursday, November 14, 13

NSLog
NSLog
NSLog
NSLog
NSLog
NSLog

Indirection

® | oops are indirection

"The numbers from 1 to 5:
"1");

")

"3%)i

(@
(@
(@"2"),
(@
(@
(@

3
ll4ll),
5"

NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog

(@"The numbers from 1 to 10:");

(e 1"
(e 2"
(@"3"
(e"a
(e"s"
(e"e"
(e"7"
(e"8"
(e@"9"

) ;

(@"10"

°
4

Thursday, November 14, 13

Indirection

® | oops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3"); -
NSLog (@"4");
NSLog (@"5");
NSLog (@"The numbers from 1 to 5:");
int 1i;
for (i = 1; i <= 5; i++) {
NSLog (€"%d\n", i);
}

NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog
NSLog

(@"The numbers from 1 to 10:");

(e"1"
(@"2"
(@"3"
(@"4"
(@"5"
(e"6"
(@"7"
(e"8"
(@"9"

) ;

(@"10"

°
4

Thursday, November 14, 13

® | oops are indirection

Indirection

NSLog (@"The numbers from 1 to 10:");
NSLog (@"The numbers from 1 to 5:"); NSLog (@"1");
NSLog (€"1"); NSLog (8"2") .
Noros tanan ! NSLog (@"3");
NSLog (@"3"); — g
NSTag (675", NSLog (€"5");
nstog (87507 NSLog (@"6");
NSLog (@"7");
NSLog (@"8");
NSLog (@"9");
NSLog (@"10");
NSLog (@"The numbers from 1 to 5:");
int 1i;
for (i = 1; i <= 5; i++) {
NSLog (€7"2d\n®, 1); NSLog (@"The numbers from 1 to 10:");
} int 1;
for (i = 1; i <= 10; i++) {
NSLog (@"%d\n", 1i);

}

Thursday, November 14, 13

Indirection

® Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int 1i;
for (1 = 1; 1 <= 5; it++) {

NSLog (@"%d\n", 1i); NSLog (@"The numbers from 1 to 10:");
} int 1i;

for (i = 1; 1 <= 10; i++) {
NSLog (@"%d\n", 1);
}

Thursday, November 14, 13

Indirection

® Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int 1i;
for (1 = 1; 1 <= 5; it++) {

NSLog (@"%d\n", i); NSLog (@"The numbers from 1 to 10:");
} int 1i;

for (i = 1; 1 <= 10; i++) {
NSLog (@"%d\n", 1i);

int count = 5;
NSLog (@"The numbers from 1 to %d:", count);

int 1i;

for (1 = 1; 1 <= count; i++) {
NSLog (@"%d\n", 1i);

Thursday, November 14, 13

Indirection

® Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int 1i;
for (1 = 1; 1 <= 5; it++) {

NSLog (@"%d\n", i); NSLog (@"The numbers from 1 to 10:");
} int 1i;

for (i = 1; 1 <= 10; i++) {
NSLog (@"%d\n", 1i);

int count = 5;
NSLog (@"The numbers from 1 to %d:", count);

int 1i; .
for (i = 1, l <= Count i+-|-) { int count = 10;
NSLog (@"%d\n", 1i); NSLog (@"The numbers from 1 to %d:", count);
} \ . '
int 1;

for (1 = 1; i <= count; i++) {
NSLog (@"%d\n", 1i);

Thursday, November 14, 13

Indirection
® Files are indirection

const char *words[4] = {

Hard-coding words: "aardvark", "abacus",
"allude", "zygote" };

Thursday, November 14, 13

Indirection

® Files are indirection

const char *words[4] = {
Hard-coding words: ‘aardvark", "abacus",
"allude", "zygote" };

Read them from a file rire *wordrile =
fopen ("/tmp/words.txt", "r");

Thursday, November 14, 13

Indirection

® Files are indirection

const char *words[4] = {
Hard-coding words: ‘aardvark", "abacus",
"allude", "zygote" };

Read them from a file rire *wordrile =
fopen ("/tmp/words.txt", "r");

int main (int argc, const char *argv[] {

Get file name from main int arecr
program argument fopen (argv(1], "r");

Thursday, November 14, 13

It's an open / closed
case

It's an open / closed
case

Robust code should be
open to extension
but closed to modification

Open/Closed Principle

| do some stuff, like loop to draw a set of views

Open/Closed Principle

| do some stuff, like loop to draw a set of views

| should be able to draw new kinds of views

Open/Closed Principle

| do some stuff, like loop to draw a set of views

| should be able to draw new kinds of views

Without changing the loop

Open/Closed Principle

| do some stuff, like loop to draw a set of views

| should be able to draw new kinds of views

Without changing the loop

Open/Closed Principle

| do some stuff, like loop to draw a set of views

| should be able to draw new kinds of views

Without changing the loop

Drawing Views

typedef struct View { cypedef enum {

ViewKind kind; kBuFtonV%ew,
Rect bounds; kSllde?Vlew,
kPonyView

} View; | .
} ViewKind;

Thursday, November 14, 13

typedef enum {

typedef struct View ({ kButtonView,
ViewKind kind;

° ° kSliderView,
Rect bounds; raWI n g I eWS kPonyView

} View; } ViewKind;

void DrawViews (View *views[], int count) {

for (int i = 0; i < count; i++) {
View *view = views[1];

switch (view->kind) {
case kButtonView:
printf ("Drawing a button!\n");
ButtonDraw (view);
break;

case kSliderView:
printf ("Drawing a slider!\n");
SliderDraw (view);
break;

case kPonyView:
printf ("OMG PONIES!\n");
PonyDraw (view);
break;

Thursday, November 14, 13

Wouldn't It Be Nice?

volid DrawViews (View *views, int count) {
for (int 1 = 0; 1 < count; i++) {

View *view = views[i];
YoViewDrawYourself (view);

} // DrawViews

Thursday, November 14, 13

Back to Indirection

Let's add a layer of
indirection!

Back to Indirection

Let's add a layer of
indirection!

Instead of calling a function directly
let's look-over-there for what function to call

Function Pointers!

typedef void (*DrawCallback) (View *view);
typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

Thursday, November 14, 13

Function Pointers!

typedef void (*DrawCallback) (View *view);
typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
printf ("Drawing a button!\n");

}

Thursday, November 14, 13

Function Pointers!

typedef void (*DrawCallback) (View *view);
typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
printf ("Drawing a button!\n");

}

DrawCallback drawer = ButtonDraw;

Thursday, November 14, 13

Function Pointers!

typedef void (*DrawCallback) (View *view);
typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
printf ("Drawing a button!\n");

}

DrawCallback drawer = ButtonDraw;

drawer (view);

Thursday, November 14, 13

Function Pointers!

typedef void (*DrawCallback) (View *view);
typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
printf ("Drawing a button!\n");

}

DrawCallback drawer = ButtonDraw;

drawer (view);

Thursday, November 14, 13

Function Pointers!

Function

drawer

drawer
drawer

drawer
drawer

(view) ;
= ImageViewDraw;
(view) ;

= SliderDraw;
(view) ;

Pointers!

Thursday, November 14, 13

So, Let's build a
jump table

typedef struct ViewVTable {
DrawCallback draw;
HitTestCallback hitTest;
DebugDescriptionCallback description;
} ViewVTable;

Thursday, November 14, 13

So, Let's build a
jump table

typedef struct ViewVTable {
DrawCallback draw;
HitTestCallback hitTest;

DebugDescriptionCallback description;
} ViewVTable;

typedef struct View {
ViewVTable vtable;
Rect bounds;
} View;

Thursday, November 14, 13

The New View Review

o draw
S
% hitTest
2 N
> description
bounds
View button = ... ;

Thursday, November 14, 13

The New View Review

static void ButtonDraw (View *view) {
printf ("Drawing a button!\n");

__> }
@ draw
@)
©
> hitTest — static bool ButtonHitTest (View *view, Point point) {
_5 printf ("Hit testing a button!\n");
> deSCr|pt|On return false;

~ }
bounds
static char * ButtonDebugDescription (View *view) {
static char s unsafeBuffer[1024];

_ snprintf (s _unsafeBuffer,
View button = ... ; sizeof (s unsafeBuffer),
"Button at %p", view);
return s unsafeBuffer;

Thursday, November 14, 13

Let's use it!

View button;

button.vtable.draw = ButtonDraw;
button.vtable.hitTest = ButtonHitTest;
button.vtable.description = ButtonDebugDescription;

button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

Thursday, November 14, 13

Let's use it!

View button;

button.vtable.draw = ButtonDraw;
button.vtable.hitTest = ButtonHitTest;
button.vtable.description = ButtonDebugDescription;

button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

volid DrawViews (View *views[], 1nt count) {
for (int i = 0; 1 < count; i++) {
View *view = views[1];
printf ("drawing %s\n",
view->vtable.description(view));
view->vtable.draw (view);

}

} // DrawViews

Thursday, November 14, 13

Let's use it!

View button;

button.vtable.draw = ButtonDraw;
button.vtable.hitTest = ButtonHitTest;
button.vtable.description = ButtonDebugDescription;

button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

volid DrawViews (View *views[], 1nt count) {
for (int i = 0; 1 < count; i++) {
View *view = views[1];
printf ("drawing %s\n",
view->vtable.description(view));
view->vtable.draw (view);

}

} // DrawViews

Thursday, November 14, 13

Let's use it!

View button;

button.vtable.draw = ButtonDraw;
button.vtable.hitTest = ButtonHitTest;
button.vtable.description = ButtonDebugDescription;

button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

volid DrawViews (View *views[], 1nt count) {
for (int i = 0; 1 < count; i++) {
View *view = views[1];
printf ("drawing %s\n",
view->vtable.description(view));
view->vtable.draw (view);

}

} // DrawViews

Thursday, November 14, 13

Let's use it!

View button;

button.vtable.draw = ButtonDraw;
button.vtable.hitTest = ButtonHitTest;
button.vtable.description = ButtonDebugDescription;

button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

volid DrawViews (View *views[], 1nt count) {
for (int 1 = 0; 1 < count; i++) {

}

View *view = views[1];

printf ("drawing %s\n",
view->vtable.description(view));

view->vtable.draw (view);

} // DrawViews Pclymorphism!

Thursday, November 14, 13

What You Just Saw

draw » ButtonDraw ();
hitTest » ButtonHitTest ();
deSCI"iptiOn » ButtonDebugDescription ()
bounds

Thursday, November 14, 13

What You Just Saw

View *button

draw » ButtonDraw ();
hitTest » ButtonHitTest ();
deSCI"iptiOn » ButtonDebugDescription ()
bounds

Thursday, November 14, 13

View *button

VVhat You

+0

+4
+8

Just Saw

draw >
hitTest >
description >
bounds

ButtonDraw ();

ButtonHitTest ();

ButtonDebugDescription ()

Thursday, November 14, 13

Make it Flexible

Make it Flexible

Let's add a layer of
indirection!

Make it Flexible

Let's add a layer of
indirection!

Instead of pointer + offset
let's look up function to call ... by name

Wouldn't It Be Nice?

Instead of

drawFunction = someView.vtable.draw;
drawFunction (bounds);

Thursday, November 14, 13

Wouldn't It Be Nice?

Instead of

drawFunction = someView.vtable.draw;
drawFunction (bounds);

How about

drawFunction = someView.dictionary.GetFunctionPointerForName("draw");
drawFunction (bounds);

Thursday, November 14, 13

Wouldn't It Be Nice?

Instead of

drawFunction = someView.vtable.draw;
drawFunction (bounds);

How about

drawFunction = someView.dictionary.GetFunctionPointerForName("draw");
drawFunction (bounds);

Add Some Fancy Syntax

[someView draw];

Thursday, November 14, 13

isa bell ringing?

isa

bounds

object

Thursday, November 14, 13

isa bell ringing?

isa
> UlIButton

bounds
class

object

Thursday, November 14, 13

isa bell ringing?

isa

bounds

object

—

UlButton

class \

method map

S

"drawRect" -> —-drawRect
"style" -> -buttonStyle
"blah" -> -blah

Thursday, November 14, 13

isa bell ringing?

isa

bounds

object

> UIButton

class \

method map

S

"drawRect" -> —-drawRect
"style" -> -buttonStyle
"blah" -> -blah

[someView drawRect];

Thursday, November 14, 13

Inheritance

UlView

method map

A

"setFrame" -> -—-setFrame
"bgColor"™ -> -bgColor
"blah" -> -blah

inherits

isa

\

_ UlButton

/V

isa class method map

A

"drawRect" -> -drawRect
"style" -> -buttonStyle
"blah" -> -blah

isa

Thursday, November 14, 13

Inheritance

UlView

A\ ™~
method map
inherits "setFrame" -> -setFrame
"bgColor"™ -> -bgColor
"blah" -> -blah
isa —
> UlButton
isa
| /////)" \\\\
1
sa Class method map
"drawRect" -> —-drawRect

"style" -> -buttonStyle

"blah"

-> —-blah

[someView setFrame];

Thursday, November 14, 13

Wrap up

GE
&

Wrap up

® Polymorphism gives you flexibility

L
TP

Wrap up

® Polymorphism gives you flexibility

® Central to the Open/Closed principle

TP

Wrap up

® Polymorphism gives you flexibility
® Central to the Open/Closed principle

® |t's all indirection

TP

Wrap up

® Polymorphism gives you flexibility
® Central to the Open/Closed principle
® [t's all indirection

® Objective-C maps names to function pointers

2

TP

Wrap up

® Polymorphism gives you flexibility
® Central to the Open/Closed principle
® [t's all indirection
® Objective-C maps names to function pointers

® At run-time! 2—2-2

TP

