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Day-in, Day-out
- (void) drawRect: (CGRect) rect {
    [[NSColor darkGrayColor] setStroke];

    for (NSString *countryCode in g_countryPaths) {
        NSBezierPath *path = [g_countryPaths objectForKey: countryCode];

        // Ask the delegate.
        NSColor *fillColor = [self.delegate worldMap: self
                                  colorForCountryCode: countryCode];

        if (fillColor == nil) fillColor = [NSColor whiteColor];

        [fillColor setFill];
        [path fill];

        [path stroke];
    }

} // drawRect
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Day-in, Day-out
- (void) drawRect: (CGRect) rect {
    [[NSColor darkGrayColor] setStroke];

    for (NSString *countryCode in g_countryPaths) {
        NSBezierPath *path = [g_countryPaths objectForKey: countryCode];

        // Ask the delegate.
        NSColor *fillColor = [self.delegate worldMap: self
                                  colorForCountryCode: countryCode];

        if (fillColor == nil) fillColor = [NSColor whiteColor];

        [fillColor setFill];
        [path fill];

        [path stroke];
    }

} // drawRect
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Why
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It's all Indirection
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It's all Indirection

Any problem in computing 
can be solved with an 

additional layer of indirection
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Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");
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Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

NSLog (@"The numbers from 1 to 10:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");
NSLog (@"6");
NSLog (@"7");
NSLog (@"8");
NSLog (@"9");
NSLog (@"10");
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Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

NSLog (@"The numbers from 1 to 10:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");
NSLog (@"6");
NSLog (@"7");
NSLog (@"8");
NSLog (@"9");
NSLog (@"10");

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
    NSLog (@"%d\n", i);
}
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Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

NSLog (@"The numbers from 1 to 10:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");
NSLog (@"6");
NSLog (@"7");
NSLog (@"8");
NSLog (@"9");
NSLog (@"10");

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
    NSLog (@"%d\n", i);
}

  
NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
    NSLog (@"%d\n", i);
}
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Indirection
• Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
    NSLog (@"%d\n", i);
}

  
NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
    NSLog (@"%d\n", i);
}
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Indirection
• Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
    NSLog (@"%d\n", i);
}

  
NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
    NSLog (@"%d\n", i);
}

int count = 5;  
NSLog (@"The numbers from 1 to %d:", count);

int i;
for (i = 1; i <= count; i++) {
    NSLog (@"%d\n", i);
}
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Indirection
• Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
    NSLog (@"%d\n", i);
}

  
NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
    NSLog (@"%d\n", i);
}

int count = 5;  
NSLog (@"The numbers from 1 to %d:", count);

int i;
for (i = 1; i <= count; i++) {
    NSLog (@"%d\n", i);
}

int count = 10;  
NSLog (@"The numbers from 1 to %d:", count);

int i;
for (i = 1; i <= count; i++) {
    NSLog (@"%d\n", i);
}
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Indirection
• Files are indirection

const char *words[4] = {
    "aardvark", "abacus", 
    "allude",   "zygote" };

Hard-coding words:
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Indirection
• Files are indirection

const char *words[4] = {
    "aardvark", "abacus", 
    "allude",   "zygote" };

Hard-coding words:

Read them from a file FILE *wordFile = 
    fopen ("/tmp/words.txt", "r");

Thursday, November 14, 13



Indirection
• Files are indirection

const char *words[4] = {
    "aardvark", "abacus", 
    "allude",   "zygote" };

Hard-coding words:

Read them from a file FILE *wordFile = 
    fopen ("/tmp/words.txt", "r");

Get file name from
program argument

int main (int argc, const char *argv[] {
   FILE *wordFile =
       fopen (argv[1], "r");
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It's an open / closed 
case
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It's an open / closed 
case

Robust code should be
open to extension 

but closed to modification
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Open/Closed Principle

I do some stuff, like loop to draw a set of views
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Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views
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Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views

Without changing the loop
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Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views

Without changing the loop

open!
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Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views

Without changing the loop

open!

closed!
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Drawing Views
typedef struct View {
    ViewKind kind;
    Rect   bounds;
} View;

typedef enum {
    kButtonView,
    kSliderView,
    kPonyView
} ViewKind;

Thursday, November 14, 13



Drawing Views
typedef struct View {
    ViewKind kind;
    Rect   bounds;
} View;

typedef enum {
    kButtonView,
    kSliderView,
    kPonyView
} ViewKind;

void DrawViews (View *views[], int count) {

    for (int i = 0; i < count; i++) {
        View *view = views[i];

        switch (view->kind) {
          case kButtonView:
            printf ("Drawing a button!\n");
            ButtonDraw (view);
            break;

          case kSliderView:
            printf ("Drawing a slider!\n");
            SliderDraw (view);
            break;

          case kPonyView:
            printf ("OMG PONIES!\n");
            PonyDraw (view);
            break;
        }
    }

} // DrawViews
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Wouldn't It Be Nice?
void DrawViews (View *views, int count) {

    for (int i = 0; i < count; i++) {
        View *view = views[i];
        YoViewDrawYourself (view);
    }

} // DrawViews
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Back to Indirection

Let's add a layer of 
indirection!
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Back to Indirection

Let's add a layer of 
indirection!

Instead of calling a function directly
let's look-over-there for what function to call
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Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);
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Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
    printf ("Drawing a button!\n");
}
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Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
    printf ("Drawing a button!\n");
}

DrawCallback drawer = ButtonDraw;

Thursday, November 14, 13



Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
    printf ("Drawing a button!\n");
}

DrawCallback drawer = ButtonDraw;

drawer (view);
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Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
    printf ("Drawing a button!\n");
}

DrawCallback drawer = ButtonDraw;

drawer (view);

no parens!
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Function Pointers!

drawer (view);
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Function Pointers!
drawer (view);

drawer = ImageViewDraw;
drawer (view);

drawer = SliderDraw;
drawer (view);
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So, Let's build a 
jump table

typedef struct ViewVTable {
    DrawCallback             draw;
    HitTestCallback          hitTest;
    DebugDescriptionCallback description;
} ViewVTable;
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So, Let's build a 
jump table

typedef struct ViewVTable {
    DrawCallback             draw;
    HitTestCallback          hitTest;
    DebugDescriptionCallback description;
} ViewVTable;

typedef struct View {
    ViewVTable vtable;
    Rect       bounds;
} View;
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The New View Review

draw

hitTest

description

bounds

Vi
ew

VT
ab

le

View button = ... ;
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The New View Review

draw

hitTest

description

bounds

Vi
ew

VT
ab

le

View button = ... ;

draw

hitTest

description

bounds

Vi
ew

VT
ab

le

View button = ... ;

static void ButtonDraw (View *view) {
    printf ("Drawing a button!\n");
}

static bool ButtonHitTest (View *view, Point point) {
    printf ("Hit testing a button!\n");
    return false;
}

static char * ButtonDebugDescription (View *view) {
    static char s_unsafeBuffer[1024];
    snprintf (s_unsafeBuffer,
              sizeof(s_unsafeBuffer), 
              "Button at %p", view);
    return s_unsafeBuffer;
}
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Let's use it!
    View button;

    button.vtable.draw = ButtonDraw;
    button.vtable.hitTest = ButtonHitTest;
    button.vtable.description = ButtonDebugDescription;

    button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };
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Let's use it!
    View button;

    button.vtable.draw = ButtonDraw;
    button.vtable.hitTest = ButtonHitTest;
    button.vtable.description = ButtonDebugDescription;

    button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
    for (int i = 0; i < count; i++) {
        View *view = views[i];
        printf ("drawing %s\n",
                view->vtable.description(view));
        view->vtable.draw (view);
    }
} // DrawViews
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Let's use it!
    View button;

    button.vtable.draw = ButtonDraw;
    button.vtable.hitTest = ButtonHitTest;
    button.vtable.description = ButtonDebugDescription;

    button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
    for (int i = 0; i < count; i++) {
        View *view = views[i];
        printf ("drawing %s\n",
                view->vtable.description(view));
        view->vtable.draw (view);
    }
} // DrawViews

open!
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Let's use it!
    View button;

    button.vtable.draw = ButtonDraw;
    button.vtable.hitTest = ButtonHitTest;
    button.vtable.description = ButtonDebugDescription;

    button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
    for (int i = 0; i < count; i++) {
        View *view = views[i];
        printf ("drawing %s\n",
                view->vtable.description(view));
        view->vtable.draw (view);
    }
} // DrawViews

open!closed!
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Let's use it!
    View button;

    button.vtable.draw = ButtonDraw;
    button.vtable.hitTest = ButtonHitTest;
    button.vtable.description = ButtonDebugDescription;

    button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
    for (int i = 0; i < count; i++) {
        View *view = views[i];
        printf ("drawing %s\n",
                view->vtable.description(view));
        view->vtable.draw (view);
    }
} // DrawViews

open!closed!

Polymorphism!
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What You Just Saw

draw

hitTest

description

bounds

ButtonDraw ();

ButtonHitTest ();

ButtonDebugDescription ()
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What You Just Saw

draw

hitTest

description

bounds

ButtonDraw ();

ButtonHitTest ();

ButtonDebugDescription ()

View *button
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What You Just Saw

draw

hitTest

description

bounds

ButtonDraw ();

ButtonHitTest ();

ButtonDebugDescription ()

View *button

+0

+4

+8
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Make it Flexible
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Make it Flexible

Let's add a layer of 
indirection!
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Make it Flexible

Let's add a layer of 
indirection!

Instead of pointer + offset
let's look up function to call ... by name
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Wouldn't It Be Nice?

drawFunction = someView.vtable.draw;
drawFunction (bounds);

Instead of
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Wouldn't It Be Nice?

drawFunction = someView.vtable.draw;
drawFunction (bounds);

drawFunction = someView.dictionary.GetFunctionPointerForName("draw");
drawFunction (bounds);

Instead of

How about
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Wouldn't It Be Nice?

drawFunction = someView.vtable.draw;
drawFunction (bounds);

drawFunction = someView.dictionary.GetFunctionPointerForName("draw");
drawFunction (bounds);

Instead of

How about

[someView draw];

Add Some Fancy Syntax
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isa bell ringing?

bounds

isa

object
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isa bell ringing?

bounds

isa

object

UIButton

class
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isa bell ringing?

bounds

isa

object

UIButton

class

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method map
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isa bell ringing?

bounds

isa

object

UIButton

class

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method map

[someView drawRect];

Thursday, November 14, 13



Inheritance

Button

Button

Button

UIButton

UIView

inherits

isa

isa 

isa

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method mapclass

"setFrame" -> -setFrame
"bgColor" -> -bgColor

"blah" -> -blah

method map

Thursday, November 14, 13



Inheritance

Button

Button

Button

UIButton

UIView

inherits

isa

isa 

isa

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method mapclass

"setFrame" -> -setFrame
"bgColor" -> -bgColor

"blah" -> -blah

method map

[someView setFrame];
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Wrap up
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Wrap up

• Polymorphism gives you flexibility
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Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle
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Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle

• It's all indirection
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Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle

• It's all indirection

• Objective-C maps names to function pointers
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Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle

• It's all indirection

• Objective-C maps names to function pointers

• At run-time!
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