
Inside the Bracket
[what reallyHappens];

CocoaHeads / Pittsburgh June 2013
CocoaHeads / Atlanta November 2013

http://borkware.com/cocoaconf

Mark Dalrymple

Thursday, November 14, 13

Day-in, Day-out
- (void) drawRect: (CGRect) rect {
 [[NSColor darkGrayColor] setStroke];

 for (NSString *countryCode in g_countryPaths) {
 NSBezierPath *path = [g_countryPaths objectForKey: countryCode];

 // Ask the delegate.
 NSColor *fillColor = [self.delegate worldMap: self
 colorForCountryCode: countryCode];

 if (fillColor == nil) fillColor = [NSColor whiteColor];

 [fillColor setFill];
 [path fill];

 [path stroke];
 }

} // drawRect

Thursday, November 14, 13

Day-in, Day-out
- (void) drawRect: (CGRect) rect {
 [[NSColor darkGrayColor] setStroke];

 for (NSString *countryCode in g_countryPaths) {
 NSBezierPath *path = [g_countryPaths objectForKey: countryCode];

 // Ask the delegate.
 NSColor *fillColor = [self.delegate worldMap: self
 colorForCountryCode: countryCode];

 if (fillColor == nil) fillColor = [NSColor whiteColor];

 [fillColor setFill];
 [path fill];

 [path stroke];
 }

} // drawRect

Thursday, November 14, 13

Why

Thursday, November 14, 13

It's all Indirection

Thursday, November 14, 13

It's all Indirection

Any problem in computing
can be solved with an

additional layer of indirection

Thursday, November 14, 13

Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

Thursday, November 14, 13

Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

NSLog (@"The numbers from 1 to 10:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");
NSLog (@"6");
NSLog (@"7");
NSLog (@"8");
NSLog (@"9");
NSLog (@"10");

Thursday, November 14, 13

Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

NSLog (@"The numbers from 1 to 10:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");
NSLog (@"6");
NSLog (@"7");
NSLog (@"8");
NSLog (@"9");
NSLog (@"10");

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
 NSLog (@"%d\n", i);
}

Thursday, November 14, 13

Indirection
• Loops are indirection

NSLog (@"The numbers from 1 to 5:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");

NSLog (@"The numbers from 1 to 10:");
NSLog (@"1");
NSLog (@"2");
NSLog (@"3");
NSLog (@"4");
NSLog (@"5");
NSLog (@"6");
NSLog (@"7");
NSLog (@"8");
NSLog (@"9");
NSLog (@"10");

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
 NSLog (@"%d\n", i);
}

NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
 NSLog (@"%d\n", i);
}

Thursday, November 14, 13

Indirection
• Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
 NSLog (@"%d\n", i);
}

NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
 NSLog (@"%d\n", i);
}

Thursday, November 14, 13

Indirection
• Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
 NSLog (@"%d\n", i);
}

NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
 NSLog (@"%d\n", i);
}

int count = 5;
NSLog (@"The numbers from 1 to %d:", count);

int i;
for (i = 1; i <= count; i++) {
 NSLog (@"%d\n", i);
}

Thursday, November 14, 13

Indirection
• Variables are indirection

NSLog (@"The numbers from 1 to 5:");
int i;
for (i = 1; i <= 5; i++) {
 NSLog (@"%d\n", i);
}

NSLog (@"The numbers from 1 to 10:");
int i;
for (i = 1; i <= 10; i++) {
 NSLog (@"%d\n", i);
}

int count = 5;
NSLog (@"The numbers from 1 to %d:", count);

int i;
for (i = 1; i <= count; i++) {
 NSLog (@"%d\n", i);
}

int count = 10;
NSLog (@"The numbers from 1 to %d:", count);

int i;
for (i = 1; i <= count; i++) {
 NSLog (@"%d\n", i);
}

Thursday, November 14, 13

Indirection
• Files are indirection

const char *words[4] = {
 "aardvark", "abacus",
 "allude", "zygote" };

Hard-coding words:

Thursday, November 14, 13

Indirection
• Files are indirection

const char *words[4] = {
 "aardvark", "abacus",
 "allude", "zygote" };

Hard-coding words:

Read them from a file FILE *wordFile =
 fopen ("/tmp/words.txt", "r");

Thursday, November 14, 13

Indirection
• Files are indirection

const char *words[4] = {
 "aardvark", "abacus",
 "allude", "zygote" };

Hard-coding words:

Read them from a file FILE *wordFile =
 fopen ("/tmp/words.txt", "r");

Get file name from
program argument

int main (int argc, const char *argv[] {
 FILE *wordFile =
 fopen (argv[1], "r");

Thursday, November 14, 13

It's an open / closed
case

Thursday, November 14, 13

It's an open / closed
case

Robust code should be
open to extension

but closed to modification

Thursday, November 14, 13

Open/Closed Principle

I do some stuff, like loop to draw a set of views

Thursday, November 14, 13

Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views

Thursday, November 14, 13

Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views

Without changing the loop

Thursday, November 14, 13

Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views

Without changing the loop

open!

Thursday, November 14, 13

Open/Closed Principle

I do some stuff, like loop to draw a set of views

I should be able to draw new kinds of views

Without changing the loop

open!

closed!

Thursday, November 14, 13

Drawing Views
typedef struct View {
 ViewKind kind;
 Rect bounds;
} View;

typedef enum {
 kButtonView,
 kSliderView,
 kPonyView
} ViewKind;

Thursday, November 14, 13

Drawing Views
typedef struct View {
 ViewKind kind;
 Rect bounds;
} View;

typedef enum {
 kButtonView,
 kSliderView,
 kPonyView
} ViewKind;

void DrawViews (View *views[], int count) {

 for (int i = 0; i < count; i++) {
 View *view = views[i];

 switch (view->kind) {
 case kButtonView:
 printf ("Drawing a button!\n");
 ButtonDraw (view);
 break;

 case kSliderView:
 printf ("Drawing a slider!\n");
 SliderDraw (view);
 break;

 case kPonyView:
 printf ("OMG PONIES!\n");
 PonyDraw (view);
 break;
 }
 }

} // DrawViews
Thursday, November 14, 13

Wouldn't It Be Nice?
void DrawViews (View *views, int count) {

 for (int i = 0; i < count; i++) {
 View *view = views[i];
 YoViewDrawYourself (view);
 }

} // DrawViews

Thursday, November 14, 13

Back to Indirection

Let's add a layer of
indirection!

Thursday, November 14, 13

Back to Indirection

Let's add a layer of
indirection!

Instead of calling a function directly
let's look-over-there for what function to call

Thursday, November 14, 13

Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

Thursday, November 14, 13

Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
 printf ("Drawing a button!\n");
}

Thursday, November 14, 13

Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
 printf ("Drawing a button!\n");
}

DrawCallback drawer = ButtonDraw;

Thursday, November 14, 13

Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
 printf ("Drawing a button!\n");
}

DrawCallback drawer = ButtonDraw;

drawer (view);

Thursday, November 14, 13

Function Pointers!
typedef void (*DrawCallback) (View *view);

typedef bool (*HitTestCallback) (View *view, Point mouseClick);

typedef char * (*DebugDescriptionCallback) (View *view);

static void ButtonDraw (View *view) {
 printf ("Drawing a button!\n");
}

DrawCallback drawer = ButtonDraw;

drawer (view);

no parens!

Thursday, November 14, 13

Function Pointers!

drawer (view);

Thursday, November 14, 13

Function Pointers!
drawer (view);

drawer = ImageViewDraw;
drawer (view);

drawer = SliderDraw;
drawer (view);

Thursday, November 14, 13

So, Let's build a
jump table

typedef struct ViewVTable {
 DrawCallback draw;
 HitTestCallback hitTest;
 DebugDescriptionCallback description;
} ViewVTable;

Thursday, November 14, 13

So, Let's build a
jump table

typedef struct ViewVTable {
 DrawCallback draw;
 HitTestCallback hitTest;
 DebugDescriptionCallback description;
} ViewVTable;

typedef struct View {
 ViewVTable vtable;
 Rect bounds;
} View;

Thursday, November 14, 13

The New View Review

draw

hitTest

description

bounds

Vi
ew

VT
ab

le

View button = ... ;

Thursday, November 14, 13

The New View Review

draw

hitTest

description

bounds

Vi
ew

VT
ab

le

View button = ... ;

draw

hitTest

description

bounds

Vi
ew

VT
ab

le

View button = ... ;

static void ButtonDraw (View *view) {
 printf ("Drawing a button!\n");
}

static bool ButtonHitTest (View *view, Point point) {
 printf ("Hit testing a button!\n");
 return false;
}

static char * ButtonDebugDescription (View *view) {
 static char s_unsafeBuffer[1024];
 snprintf (s_unsafeBuffer,
 sizeof(s_unsafeBuffer),
 "Button at %p", view);
 return s_unsafeBuffer;
}

Thursday, November 14, 13

Let's use it!
 View button;

 button.vtable.draw = ButtonDraw;
 button.vtable.hitTest = ButtonHitTest;
 button.vtable.description = ButtonDebugDescription;

 button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

Thursday, November 14, 13

Let's use it!
 View button;

 button.vtable.draw = ButtonDraw;
 button.vtable.hitTest = ButtonHitTest;
 button.vtable.description = ButtonDebugDescription;

 button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
 for (int i = 0; i < count; i++) {
 View *view = views[i];
 printf ("drawing %s\n",
 view->vtable.description(view));
 view->vtable.draw (view);
 }
} // DrawViews

Thursday, November 14, 13

Let's use it!
 View button;

 button.vtable.draw = ButtonDraw;
 button.vtable.hitTest = ButtonHitTest;
 button.vtable.description = ButtonDebugDescription;

 button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
 for (int i = 0; i < count; i++) {
 View *view = views[i];
 printf ("drawing %s\n",
 view->vtable.description(view));
 view->vtable.draw (view);
 }
} // DrawViews

open!

Thursday, November 14, 13

Let's use it!
 View button;

 button.vtable.draw = ButtonDraw;
 button.vtable.hitTest = ButtonHitTest;
 button.vtable.description = ButtonDebugDescription;

 button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
 for (int i = 0; i < count; i++) {
 View *view = views[i];
 printf ("drawing %s\n",
 view->vtable.description(view));
 view->vtable.draw (view);
 }
} // DrawViews

open!closed!

Thursday, November 14, 13

Let's use it!
 View button;

 button.vtable.draw = ButtonDraw;
 button.vtable.hitTest = ButtonHitTest;
 button.vtable.description = ButtonDebugDescription;

 button.bounds = (Rect) { 0.0, 0.0, 100.0, 200.0 };

void DrawViews (View *views[], int count) {
 for (int i = 0; i < count; i++) {
 View *view = views[i];
 printf ("drawing %s\n",
 view->vtable.description(view));
 view->vtable.draw (view);
 }
} // DrawViews

open!closed!

Polymorphism!
Thursday, November 14, 13

What You Just Saw

draw

hitTest

description

bounds

ButtonDraw ();

ButtonHitTest ();

ButtonDebugDescription ()

Thursday, November 14, 13

What You Just Saw

draw

hitTest

description

bounds

ButtonDraw ();

ButtonHitTest ();

ButtonDebugDescription ()

View *button

Thursday, November 14, 13

What You Just Saw

draw

hitTest

description

bounds

ButtonDraw ();

ButtonHitTest ();

ButtonDebugDescription ()

View *button

+0

+4

+8

Thursday, November 14, 13

Make it Flexible

Thursday, November 14, 13

Make it Flexible

Let's add a layer of
indirection!

Thursday, November 14, 13

Make it Flexible

Let's add a layer of
indirection!

Instead of pointer + offset
let's look up function to call ... by name

Thursday, November 14, 13

Wouldn't It Be Nice?

drawFunction = someView.vtable.draw;
drawFunction (bounds);

Instead of

Thursday, November 14, 13

Wouldn't It Be Nice?

drawFunction = someView.vtable.draw;
drawFunction (bounds);

drawFunction = someView.dictionary.GetFunctionPointerForName("draw");
drawFunction (bounds);

Instead of

How about

Thursday, November 14, 13

Wouldn't It Be Nice?

drawFunction = someView.vtable.draw;
drawFunction (bounds);

drawFunction = someView.dictionary.GetFunctionPointerForName("draw");
drawFunction (bounds);

Instead of

How about

[someView draw];

Add Some Fancy Syntax

Thursday, November 14, 13

isa bell ringing?

bounds

isa

object

Thursday, November 14, 13

isa bell ringing?

bounds

isa

object

UIButton

class

Thursday, November 14, 13

isa bell ringing?

bounds

isa

object

UIButton

class

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method map

Thursday, November 14, 13

isa bell ringing?

bounds

isa

object

UIButton

class

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method map

[someView drawRect];

Thursday, November 14, 13

Inheritance

Button

Button

Button

UIButton

UIView

inherits

isa

isa

isa

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method mapclass

"setFrame" -> -setFrame
"bgColor" -> -bgColor

"blah" -> -blah

method map

Thursday, November 14, 13

Inheritance

Button

Button

Button

UIButton

UIView

inherits

isa

isa

isa

"drawRect" -> -drawRect
"style" -> -buttonStyle

"blah" -> -blah

method mapclass

"setFrame" -> -setFrame
"bgColor" -> -bgColor

"blah" -> -blah

method map

[someView setFrame];

Thursday, November 14, 13

Wrap up

Thursday, November 14, 13

Wrap up

• Polymorphism gives you flexibility

Thursday, November 14, 13

Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle

Thursday, November 14, 13

Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle

• It's all indirection

Thursday, November 14, 13

Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle

• It's all indirection

• Objective-C maps names to function pointers

Thursday, November 14, 13

Wrap up

• Polymorphism gives you flexibility

• Central to the Open/Closed principle

• It's all indirection

• Objective-C maps names to function pointers

• At run-time!

Thursday, November 14, 13

